LABORATORY INSTRUMENTATION

Transmission of Radiation

|

1. COAXIAL TRANSMISSION LINE. VELOCITY OF PROPAGATION,
IMPEDANCE MATCHING

APPARATUS

Oscilloscope

Coaxial line (about 20 m in length)
Coaxial line (about 1 m in length)
Various line terminations
Pulse-generating circuit (see Figure 1.7a)

OBJECTIVES

To study the amplitude of a reflected pulse as a function of load resistance.
To measure the velocity of a pulse propagating on a coaxial transmission line.

To determine the capacitance of a 1-m coaxial line and use the result to calculate a
theoretical velocity of a pulse propagating on a coaxial line.

To observe the decrease in amplitude of a multi-reflected pulse and determine the
attenuation constant of the coaxial line.

To observe the time dependence of a reflected pulse for loads of various impedance.
To gain an understanding of impedance, impedance matching, and reflection coefficients.

i

KEY CONCEPTS

TEM mode Phase constant
Inductance per unit length Characteristic impedance
Resistance per unit length Reflection coefficient

43




44 EXPERIMENTS

Capacitance per unit length Load impedance
Siemens per unit length Source impedance
Propagation constant Impedance matching

Attenuation constant
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INTRODUCTION

A coaxial line is a two-conductor transmission line consisting of a center conductor, a
dielectric spacer, and a concentric outer conductor. The electric and magnetic field configu-
rations, or modes, are most commonly transverse electromagnetic (TEM) field modes. In a
TEM mode both the electric and magnetic fields are entirely transverse to the direction of
propagation. A longitudinal section of a coaxial line is shown in Figure 1.1, along with the
(radial) electric field E and the (concentric circular) magnetic field B of a TEM mode.

A coaxial line is often used to transmit energy from a generator to a load. We ask, “How
does the line effect the transmission of energy?”
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FIGURE 1.1 A TEM mode propagating on a Ionéitudinal section of a coaxial transmission line.
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1. A current in the center conductor sets up a magnetic field encircling the conductor.
Hence, the line has inductance L’.

2. The line has resistance R’, since the conductors making up the line have resistance. R’
depends on the “skin depth” and will thus be frequency dependent.

3. There will be a voltage between and charges on the conductors. Hence, the line has
capaciiance C’. _

4. The dielectric between the conductors is not perfect; therefore, it is necessary to associate
a conductivity with the dielectric. Hence, the line has a ‘conductance G”.

We shall see that these four parameters determine the impedance of the line, and the
velocity, phase, and attenuation of waves propagating on the line. In this experiment, the
propagation of voltage and current waves, rather than electric and magnetic field waves, are
examined.

The value per unit length of line can be calculated for each parameter. For a coaxial line
with an inner conductor of radius a and an outer conductor of inside radius b, the
calculated values per unit length of line are

_Htt
L= in- (H/m) 0]
_1 ferfl 1
R=3 — (b + a) (Q/m) @)
2nte
~50/5 (F/m) 3)
G . g = ﬂa— S* 4
=" T e (8%/m) 9

where

u is the magnetic permeability of the dielectric (H/m),

¢ is the electric permittivity of the dielectric (F/m),

g is the conductivity of the dielectric (S/m),

U is the magnetic permeability of the conductors (H/m),
o, is the conductivity of the conductors (S/m), and

v is the frequency of the waves.

EXERCISE 1

Derive the expressions for the inductance and capacitance per unit length, equations 1 and
3, for a coaxial line.

For the resistance and inductance, all sections of the line are in series; therefore, for a line
of length ¢ the total resistance and inductance are R and LZ. For the capacitance and
conductance, all sections are in parallel; therefore, for a line of length £ the total capacitance
and conductance are C/ and GZ. At very low frequencies the effect of the inductance,
capacitance, resistance, and conductance of the line can be taken into account by either

*S stands for siemens after Ernst Werner von Siemens (1816—1892). The siemens was formerly called the mho.
One siemens is equal to one ampere/volt.
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FIGURE 1.2 Both circuits are equivalent to a coaxial line when the
propagating fields have very low frequencies.

equivalent circuit shown in Figure 1.2. At very high frequencies the impedance presented to
the generator is
(i) the capacitive reactance for the circuit in Figure 1.2a

1
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(ii) the inductive reactance for the circuit in Figure 1.25
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A way of making the impedances the same and obtaining a circuit that is the exact
equivalent of the coaxial line is to divide the total inductance, capacitance, resistance, and
conductance into an infinite number of infinitesimal elements. The exact equivalent circuit -
of a coaxial line is shown in Figure 1.3.

The general equations for the current in each conductor and the voltage between the
conductors may be obtained by considering a line element of length Az (Figure 1.4a). Figure
1.4b shows the corresponding length of the coaxial line. If we denote by g the charge per
unit length of the conductor, we can write, using superior bars to denote average values in

lvv\,__IVW\ ‘VVV_JVW\____-
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Caz r GAz CAz [ GAz
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FIGURE 1.3 Equivalent circuit of a coaxial line.
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FIGURE 1.4 Current along and voltage across a section of (a) an equivalent circuit of a coaxial line and
(b) a coaxial line.

the length Az,
(C/F) &)

The net rate of decrease of the charge in Az is given by the net current leaving Az along
the wire plus the leakage current PGAz, so that

—Ai=

6(q:3Az) +VGAz  (Cfs) (6)

t
Substituting from equation 5 into 6, dividing by Az, and taking limits, we obtain

di oV
5;— -—CE—GV (C/S m) (7)

with ¥ replaced by V.
The total voltage drop in Az is given by

—AV=LAZZ—;+iRAz V) (8

Dividing by Az and taking limits, we obtain

v i
= L3~k (Vm) (&)

Differentiating equation 9 with respect to z yields
o’V a0 (0i 0i
— =L —{=)~R=
0z2 0z (az) R 0z
0 (0i di )
If equation 7 is used to replace di/dz, then equation 10 becomes

o2y 3 ov ov ,
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Equation 11 may be written
oV v v 5
57 =RGV+(RC+LG)Z-+LCo5  (V/m?) (12)

Equation 12 is the general equation for the transmission of electric signals along a wire. It
is called the telegraph equation because it describes: the transmission of telegraph signals in
conductors.

The equation for the current is of the same form as equation 12, and can be obtained by
differentiating equation 7 with respect to z.

We can obtain solutions of equation 12 for the case of a harmonically varying wave with
a time dependence given by

Vi, ) =V( e (V) (13)
where j>= —1. For this case, equation 12 becomes
’V(z) i : 5
pa RGV(2) + (RC + LG)jwV(z) — LCw?V(2) (V/m?) (14)

where the time dependence cancels.
The net effect of the series resistance and inductance can be expressed by the series
impedance Z per unit length:

Z=R+jolL  (Q/m). (15)

The net effect of the shunt conductance and capacitance can be expressed by the shunt
admittance Y per unit length:

Y=G+ jwC (S/m) (16)
Writing equation 14 in terms of Y and Z we have

d*V(2)
dz?

=ZYV(z) (V/m?) 17

1t
The equation for i(z) is obtained in a similar manner:

d%i(z)
dz?

=ZYi(z) (A/m?) (18)

If we try a solution for equation 17 of the form e, we find
V)=V, e+ V,e " ) (19)

where ¥, and V, are arbitrary constants that can be found from initial or boundary
conditions, and 7, called the propagation constant, is given by

y =ZY = /(R +joL)G +joC)  (m™ (20)

The propagation constant is complex with a real part a called the attenuation constant and
an imaginary part § called the phase constant:

a=Re(y) f=Im@) (m™) @n
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The solution V{(z,¢) is obtained by multiplying equation 19 by the harmonic time
dependence e/

V(Z, I) — Vl e ej(wH-ﬁz) + V2 e~ % ej(w(*ﬂz)
=V(z,0+ Vi) (V) (22

The term involving wt + Bz represents a reflected wave V,(z, f), reflected from the load,
traveling in the negative z direction along the transmission line. The factor e* indicates that
this wave decreases in magnitude as it travels in the negative z direction. The term involving
wt — Pz represents an incident wave V,(z, ), incident on the load, traveling in the positive
z direction, and the factor e ~** indicates that this wave decreases in magnitude as it travels
in the positive z direction. The total voltage V(z, ) at any point z along the line is the
superposition of the two traveling waves.

The total current i(z, ) may be obtained by substituting equation 22 into equation 7 and
then integrating over z:

V, vV,
T @z/ryre @/ryr°
=iz, ) +i(z,0) (A) (23)

i(Z, t) = az ej(wl + B2) + —az ej(wt —B2)

where i,(z, f) and i;(z, 7) represent reflected and incident current waves that are traveling in
the negative and positive directions, respectively. The total current i(z, f) is a superposition
of these two traveling waves.

The incident wave, reflected wave, and total wave are shown in Figure 1.5 at three
separate points along a section of coaxial line. The load that reflects the reflected wave is to
the right and the source of emf that produces the waves is to the left. The outer conductor
is shown grounded, which is usually the case, and, hence, current is not shown in the outer
conductor. As you will see, V;, the constant term in the amplitude of the reflected wave, is
less than or equal to V,, the constant term in the amplitude of the incident wave. It is
usually less, and letters of different size are used to indicate this in Figure 1.5.

For the waves specified by equations 22 and 23, § equals 2 /4, where 1 is the wavelength,
and w/p is the wave velocity.

Total wave Component waves
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FIGURE 1.5 The incident, reflected, and total waves are shown at three sepa-
rate points along a coaxial line.

EXERCISE 2

If R and G are small or if the frequency is large so that wL > R and oC > G, then factor
w./LC from the right-hand side of equation 20, followed by a binomial expansion, and
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ignoring small terms in the expansion raised to the second and higher powers, show that

o = Re(y) ~ -—“’;C (g + I—z) (m™ Y
g =Im®) =~ 0 /LC (m™"

Hence, show that the wave velocity v is given by

1 1
o™ @

e

v=

where the last equality was obtained by using equations 1 and 3. If there is no material
between the conductors, then u = gy, € =&, and v =, the velocity of light.

When we confine our attention to a single wave traveling in the positive z direction with
voltage ¥;(z, t) and current i(z, f), the characteristic impedance Z_ of the line is defined to
be the ratio of the voltage across the line to the current through the line for such a wave:

V) _ [z
z=l= fY @) 9

R + joL
= 222 (a
Z G + joC ( ), @5

Note that if R and G are negligibly small (an ideal, lossless line), then

_ B w0
Zc_\/;_zn\/;lna Q) (26)

where equations 1 and 3 were used in the last equality.

Using equations 15 and 16,

EXERCISE 3

If R and G are small or if the frequency is large so that wL > R and oC > G, then expand
equation 25, similar to the expansion carried out in Exercise 2, to show that

L [ G R
Z,~ \[E[‘ +](§w-c—m)] @ @7

Reflection Coefficient at the Output

Consider a transmission line of length ¢ and characteristic impedance Z,, which is fed by an
emf ¢ with a (source) impedance Z, and terminated with a load of impedance Z; (Figure
1.6). At the output end where z =7, the load impedance Z, is defined to be

Z =—" @ (28

If equations 23 and 22 are substituted, then equation 28 becomes

Z, = zc( (29)

V. e tif —az —jBe
Vie + Ve

V. af + jB¢ V. —al —jpt
e +V,e ) @
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Solving equation 29 for V,, we have

Z, +2Z
V, = e +i2pty ZL T Ce V) (30)
) z—7

The ratio of the reflected wave to the incident wave at z = £ is given by

Vit,)  Vie¥ e s 7.z

= , - 31
Vilt, ) Vye ¥ @-0"Z 17 @b

where equation 30 was used. The ratio of the reflected to the incident current at z = ¢ is
given by

ir([’ t) _ (VI/ZC) eal ei(m’+ﬂ/)
A
Z, —Z
= _zi Tz ©2)

The output reflection coefficient I'; is defined to be

ZL - Zc
= Z +Z, ©3)

Note that if T, is positive the current changes sign on reflection and the voltage does not,
and if I'_ is negative then the voltage changes sign and the current does not. For an
open-circuited line Iy = +1, and for a short-circuited line I =—1, and therefore
—-1=TI' 2 +1.

Impedance matching of the load to the line occurs when Z, = Z_; then I'y =0 and there
are no reflected waves.

EXERCISE 4

(a) If the line is open-circuited, then show that the current fhrough the load is zero and the
voltage across the load is twice the incident voltage. (b) If the line is short-circuited, then
show that the voltage across the load is zero and the current through the load is twice the
incident current.

Reflection Coefficient at the Input

Let 7 be the time for a wave to propagate from one end of the line to the other; that is,
7 =7/v. If we turn on the emf at 1 =0, then for ¢ < 27 only the incident wave Vi, i) from
the emf exists at the input end of the line. For such a case, we apply Kirchhoff’s loop
theorem to the input of the coaxial line shown in Figure 1.6 to obtain

€0 = Zoii (0, = Vi(0,1) (V) (34)

where

Vi(0, ) = Z.i(0,) (V) (35)




52 EXPERIMENTS

¢ 1

FIGURE 1.6 The source of emf with ini*;)edance Z, is shown
connected to a coaxial line of characteristic
impedance Z_ and the line is terminated with a
load of impedance Z, .

Solving for ¥; and i;, we find that

z
Vi(0, 1) = Z _:Z €y (V)
(0, 1) =z:(% (A) 6)

For ¢ 2 21, a second incident wave (¥}, i{), which has reflected off of the load, arrives at the
input. There are now three waves at the input of the coaxial line: (1) (V;, §), a wave incident
from the generator; (2) (¥}, i;), a wave reflected from the load; (3) (V7;, i;), the reflection of
(Vi, i) at the input. Applying Kirchhoff’s loop theorem to the input of the coaxial line
shown in Figure 1.6, we obtain

€(f) — Z[ii(0, 1) + i(0, ) +i(0, )] = Vi (0, ) + Vi (0, ) + V(0,0) (V) (37)
Also

;=

o=l o=l W (38)

where i{ and ¥ are out of phase by = following the reflection at z = ¢. Substituting equation
38 into 37, and using equaton 36 to eliminate ¥; and i;, we find

= Zi—
_ZomZey oy g B Zey
Zy+ Z,

24 i
r Zo+Zc ll

A) (39)

If we define
Tp= %;—; (40)
to be the reflection coefficient at the input to the line, then equations 39 become
| C W=T (V) =Tl (A) (41
where -1 5T = 1.
Impedance matching of the emf to the line occurs when Z, = Z_ and V;=0.

EXERCISE 5

If the emf is matched to the line, that is, Z,= Z,, but the load is not matched to the line,
that is, Z, # Z,, then show that the voltage across the load and the current through the
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load are given by

2, 27,
=="1_ (A v=
Zirz, W Z, +2,

i

Vi (V)

where V; is the voltage incident on the load.

EXPERIMENT

Connect the circuit shown in Figure 1.7 with R = Z_. Set the square wave generator to
10*Hz and observe the voltage pulses on the oscilloscope. Connect the circuit shown in
Figure 1.7b with Z; = c0. The generator pulse period is much greater than z, the time for
the pulse to travel the length of the coaxial line. The oscilloscope will display the pulse
incident on the transmission line from the generator, followed by a pulse that has reflected
from the load and returned to the input of the line.

Undesirable reflected signals at the input can be reduced by making the leads connecting
the resistor R, the oscilloscope, and the coaxial line as short as possible. One way to do this
is by using a male BNC and a female banana connector. The male BNC connects to the
oscilloscope and the resistor R and the coax connects directly to the banana receptacles.

Perhaps it is worth comparing the circuits shown in Figures 1.6 and 1.7. In Figure 1.6 the
impedance Z, is the impedance as seen from the transmission line side of the input. In
Figure 1.7b the impedance seen from the transmission line side of the input is the total
impedance of three parallel impedances: (1) the oscilloscope impedance, (2) the resistance R,
and (3) the impedance of the 510 Q, the 5pF, and the generator in series. The typical
impedance of a generator is 600 Q; hence, the impedance of the series combination is given
by

Zs%\/R§+(wC’)‘2=\/11102+(w5 x10-2)-2  (q) (42)

5pF 5100

—WA—

Square-wave h k
generator R V

Oscilloscope

5pF 5100 Coaxial Line

Square-wave
generator

-<—{’=20m——>-1

Oscilloscope

)

FIGURE 1.7 (a) Circuit to generate pulses. The pulses are
sketched to the right. (6) Circuit to study pulses
propagating on a coaxial line.
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The oscilloscope impedance is about 1 MQ, and since the three impedances are in parallel
the reciprocal of Z, is given by

1 1 1 1
,Zo_R+Zs+lMQ (1/Q) 43)
Note that when R = Z_, which is much less than Z, and 1 MQ, then Z,~ R and the input
is impedance matched to the transmission line.

With R = Z_, observe and compare the pulse incident on the load with the pulse reflected
from the load when the load impedance Z; is (a) open circuit, (b) short circuit, and (c) a
resistor that matches the line impedance.

EXERCISE 6

In cases a.and b, do you expect the reflected and incident pulses to have the same or
opposite signs? Explain.

With Z, = 0 and R = 0, observe the multireflected pulse.

EXERCISE 7

From your observation of the multireflected pulse determine the attenuation constant a.

With R = Z_, use a 1-kQ potentiometer as a load and measure the voltage of the reflected
pulse as a function of the load resistance. Plot a graph of the reflected voltage versus load
resistance. Compare your graph with theory by plotting a theoretical curve of the reflected
voltage versus load resistance. See equation 31.

With R =2Z, and Z, =0 observe the pulses on the oscilloscope and determine an
experimental value for the velocity of a pulse. The theoretical value of the velocity is 1 /\/_ A
where p ~ p;. To determine ¢, and, hence, a theoretical value for the velocity, connect the
circuit shown in Figure 1.8. Measure the RC’ time constant, use your measured value to
determine the capacitance C’, and then calculate the capacitance per unit length C, which
is C’/¢. When C is known, use equation 3 to solve for ¢ and, hence, the theoretical velocity
of the pulse.

Square-wave )
generator
1MQ Fo i ———]

FIGURE 1.8 Circuit to measure the RC’ time constant.

EXERCISE 8

Compare the experimental and theoretical values of the velocity of the pulse.

The 1-MQ resistance shown in Figure 1.8 is of the order of the oscilloscope impedance,
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and therefore the resistance in the RC time constant will be an appropriate combination of
the oscilloscope impedance and the 1-MQ resistance. The scope impedance may be specified
on the scope; if not, look it up in the manufacturer’s operating manual.

Reconnect the circuit in Figure 1.7 with R = Z_. Terminate the 20-m line with an
inductor and observe the reflected pulse. Replace the inductor with a capacitor and observe
the reflected pulse.

EXERCISE 9

Explain the shape (time dependence) of the reflected pulse for each termination.




